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1. Introduction

In the last few years, a big effort has been devoted by several authors to the problem of

computing one-loop amplitudes efficiently [1]. Besides Standard techniques, where ten-

sor reduction/computation is performed, numerically or analytically, new developments

emerged, originally inspired by unitarity arguments (the so called unitary and generalized

unitarity methods) [2]–[5], in which the tensor reduction/computation is substituted by the

problem of determining the coefficients of the contributing scalar one-loop functions. This

possibility relies on the fact that the basis of one-loop integrals is known in terms of Boxes,

Triangles, Bubbles and (in massive theories) Tadpoles, in such a way that, schematically,

one can write a Master Equation for any one-loop amplitude M such as:

M =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R , (1.1)

where di, ci, bi and ai are the coefficients to be determined.

Nevertheless, in practice, only the part of the amplitude proportional to the one-

loop scalar functions can be obtained straightforwardly in the unitary cut method. The

remaining Rational Terms, RTs, (R in the above equation) should be reconstructed by

other means, either by direct computation [6, 7] or by boostrapping methods [8]. In [9] the

RTs are obtained by explicitly computing the amplitude at different integer value of the

space-time dimensions. In [10] cut-constructible and rational parts are calculated at the

same time by using d-dimensional unitarity cuts.

On the other hand, in another recently proposed method, OPP [11], a class of terms

contributing to R can be naturally derived in the same framework used to determine all

the other coefficients.
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In this paper, we critically analyze the various sources of RTs appearing in one-loop

amplitudes, by classifying them in two categories: R = R1 + R2, also presenting a few

computational methods. In the next section, we investigate the origin of R2 and develop

a practical computational strategy. In section 3, after a brief recall of the OPP method, we

present a way to compute R1, strictly connected to the OPP framework. In section 4, we

describe yet another method that relies on cuts in n-dimensions. This second method is

proven more suitable for numerical applications within the OPP algorithm and may also be

applied in a more general framework. Finally, in the last section, we outline our conclusions.

2. The origin of R2

Our starting point is the general expression for the integrand of a generic m-point one-loop

(sub-)amplitude [11]

Ā(q̄) =
N̄(q̄)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 − m2
i , p0 6= 0 . (2.1)

In the previous equation, dimensional regularization is assumed, so that we use a bar to

denote objects living in n = 4 + ǫ dimensions. Furthermore q̄2 = q2 + q̃2, where q̃2

is ǫ-dimensional and (q̃ · q) = 0. The numerator function N̄(q̄) can be also split into a

4-dimensional plus a ǫ-dimensional part

N̄(q̄) = N(q) + Ñ(q̃2, q, ǫ) . (2.2)

N(q) is 4-dimensional (and will be discussed in the next section) while Ñ(q̃2, q, ǫ) gives rise

to the RTs of kind R2, defined as

R2 ≡
1

(2π)4

∫

dn q̄
Ñ(q̃2, q, ǫ)

D̄0D̄1 · · · D̄m−1
≡

1

(2π)4

∫

dn q̄R2 . (2.3)

To investigate the explicit form of Ñ(q̃2, q, ǫ) it is important to understand better the

separation in eq. (2.2). From a given integrand Ā(q̄) this is obtained by splitting, in

the numerator function, the n-dimensional integration momentum q̄, the n-dimensional γ

matrices γ̄µ̄ and the n-dimensional metric tensor ḡµ̄ν̄ into a 4-dimensional component plus

remaining pieces:

q̄ = q + q̃ ,

γ̄µ̄ = γµ + γ̃µ̃ ,

ḡµ̄ν̄ = gµν + g̃µ̃ν̃ . (2.4)

Notice that, when a n-dimensional index is contracted with a 4-dimensional (observable)

vector vµ, the 4-dimensional part is automatically selected. For example

q̄ · v = q · v and /̄v = /v . (2.5)

A practical way to compute R2 is determining, once for all, tree-level like Feynman

Rules for the theory at hand by calculating, with the help eq. (2.4), the R2 part coming from
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q̄µ γ
γ

1

2

Q̄2

Q̄1

Q̄1 = q̄ + p1 = Q1 + q̃

Q̄2 = q̄ + p2 = Q2 + q̃

D̄0 = q̄2

D̄1 = (q̄ + p1)
2

D̄2 = (q̄ + p2)
2

Figure 1: QED γe+e− diagram in n dimensions.

one-particle irreducible amplitudes up to four external legs. The fact that four external

legs are enough is guaranteed by the ultraviolet nature of the RTs, proven in [6].

As an illustrative example, we derive the complete set of the Feynman Rules needed

in QED. Along such a line R2 can be straightforwardly computed in any theory. We start

from the one-loop γe+e− amplitude in figure 1. The numerator can be written as follows

N̄(q̄) ≡ e3
{

γ̄β̄ (/̄Q1 + me) γµ (/̄Q2 + me) γ̄β̄
}

= e3
{

γβ(/Q1 + me)γµ(/Q2 + me)γ
β

− ǫ (/Q1 − me)γµ(/Q2 − me) + ǫq̃2 γµ − q̃2 γβγµγβ
}

, (2.6)

where all ǫ-dimensional γ-algebra has been explicitly worked out1 in order to get the desired

splitting. The first term in the r.h.s. of eq. (2.6) is N(q), while the sum of the remaining

three define Ñ(q̃2, q, ǫ) for the case at hand. By inserting Ñ(q̃2, q, ǫ) in eq. (2.3) and using

the fact that
∫

dnq̄
q̃2

D̄0D̄1D̄2
= −

iπ2

2
+ O(ǫ) ,

∫

dnq̄
qµqν

D̄0D̄1D̄2
= −

iπ2

2ǫ
gµν + O(1) , (2.7)

gives

R2 = −
ie3

8π2
γµ + O(ǫ) , (2.8)

that can be used to define the effective vertex of figure 2.

With analogous techniques, taking also into account the integrals given in eq. (4.2),

one gets all the remaining QED effective vertices given in figure 3.

To summarize, the problem of computing R2 is reduced to a tree level calculation and

we consider it fully solved. The R1 part is, instead, deeply connected to the structure of the

one-loop amplitude, as we shall see in the next section. It is worthwhile to mention that

only the full R = R1 + R2 constitutes a physical gauge-invariant quantity in dimensional

regularization.

1ǫ-dimensional γ matrices freely anti-commute with four-dimensional ones: {γµ, γ̃ν} = 0.
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µ • = −
ie3

8π2
γµ

Figure 2: QED γe+e− effective vertex contributing to R2.

p
•µ ν = −

ie2

8π2
gµν (2m2

e − p2/3)

p
• =

ie2

16π2
(−/p + 2me)

ρσ

νµ

• =
ie4

12π2
(gµνgρσ + gµρgνσ + gµσgνρ)

Figure 3: QED γγ, ee and γγγγ effective vertices contributing to R2.

3. The OPP method and the origin of R1

The OPP reduction algorithm provides a useful framework to understand the origin of the

RTs of kind R1. The starting point of the method is an expansion of N(q) in terms of

4-dimensional denominators Di = (q + pi)
2 − m2

i

N(q) =
m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+
m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
m−1
∏

i6=i0,i1,i2

Di

+
m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+
m−1
∑

i0

[a(i0) + ã(q; i0)]
m−1
∏

i6=i0

Di

+P̃ (q)
m−1
∏

i

Di . (3.1)

Inserted back in eq. (2.1), this expression simply states the multi-pole nature of any m-point

one-loop amplitude. The fact that only terms up to 4 poles appear is due to the fact that

m-point scalar loop functions with m > 4 are always expressible in terms of boxes up to
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contributions O(ǫ). The last term with no poles, P̃ (q), has been inserted for generality, but

is zero in practical calculations where m-point amplitudes behave such as N(λq) → λm

when λ → ∞. The coefficients of the poles can be further split in two pieces. A piece

that still depend on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration due to Lorentz

invariance, and a piece that do not depend on q (the terms d, c, b, a). Such a separation

is always possible, as shown in [11], and, with this choice, the latter set of coefficients is

therefore immediately interpretable as the ensemble of the coefficients of all possible 4, 3,

2, 1-point one-loop functions contributing to the amplitude.

Once eq. (3.1) is established, the task of computing the one-loop amplitude is then

reduced, in the OPP method, to the algebraical problem of fitting the coefficients d, c, b, a

by evaluating the function N(q) a sufficient number of times, at different values of q, and

then inverting the system. Notice that this can be performed at the amplitude level and

that one does not need to repeat the work for all Feynman diagrams, provided their sum

is known.

The OPP expansion is written in terms of 4-dimensional denominators. On the other

hand, n-dimensional denominators D̄i appear in eq. (2.1), that differ by an amount q̃2 from

their 4-dimensional counterparts

D̄i = Di + q̃2 (3.2)

The result of this is a mismatch in the cancellation of the n-dimensional denominators of

eq. (2.1) with the 4-dimensional ones of eq. (3.1) (the OPP expansion), that originates a

Rational Part. In fact, by inserting eq. (3.2) into eq. (3.1), one can rewrite it in terms of

n-dimensional denominators (therefore restoring the exact cancellation), but at the price

of adding an extra piece f(q̃2, q). The RTs of kind R1 are defined as

R1 ≡
1

(2π)4

∫

dn q̄
f(q̃2, q)

D̄0D̄1 · · · D̄m−1
. (3.3)

The explicit form of the function f(q̃2, q) can be easily and explicitly obtained, in the

framework of the OPP method, by rewriting any denominator appearing in eq. (2.1) as

follows

1

D̄i

=
Z̄i

Di

, with Z̄i ≡

(

1 −
q̃2

D̄i

)

. (3.4)

This results in

Ā(q̄) =
N(q)

D0D1 · · ·Dm−1
Z̄0Z̄1 · · · Z̄m−1 + R2 , (3.5)

where R2 is the integrand function introduced in eq. (2.3). Then, by inserting eq. (3.1) in

– 5 –
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eq. (3.5), one obtains

Ā(q̄) =

m−1
∑

i0<i1<i2<i3

d(i0i1i2i3) + d̃(q; i0i1i2i3)

D̄i0D̄i1D̄i2D̄i3

m−1
∏

i6=i0,i1,i2,i3

Z̄i

+

m−1
∑

i0<i1<i2

c(i0i1i2) + c̃(q; i0i1i2)

D̄i0D̄i1D̄i2

m−1
∏

i6=i0,i1,i2

Z̄i

+

m−1
∑

i0<i1

b(i0i1) + b̃(q; i0i1)

D̄i0D̄i1

m−1
∏

i6=i0,i1

Z̄i

+

m−1
∑

i0

a(i0) + ã(q; i0)

D̄i0

m−1
∏

i6=i0

Z̄i

+P̃ (q)

m−1
∏

i

Z̄i + R2 . (3.6)

R1 is then produced, after integrating over dnq̄, by the q̃2 dependence coming from the

various Z̄i in eq. (3.6). This strategy have been adopted in [12], where also all needed

integrals have been carefully classified and computed.

Although rather transparent, the above derivation of R1 has two drawbacks. First of

all, it requires the knowledge of the spurious terms.2 Secondly, it is not suitable when com-

bining diagrams together because, when taking common denominators, additional terms

containing q̃2 appear in the numerator, that may give rise to new rational parts. The book-

keeping of such new structures is equivalent to the treatment of each diagram separately,

jeopardizing the ability of the 4-dimensional OPP technique of dealing directly with the

amplitude. For these reasons we present, in the next section, a different way of attacking

this problem that does not relies on spurious terms and that also allows one to combine

diagrams before fitting the coefficients d, c, b, a. This second method is better suited for a

numerical implementation, and it has been already successfully implemented in a Fortran

code [13].

4. The n-dimensional cuttings to compute R1

The Rational Terms R1 can be computed by looking at the implicit mass dependence

(namely reconstructing powers of q̃2) in the coefficients d, c, b of the one-loop functions,

once q̃2 is reintroduced through the mass shift

m2
i → m2

i − q̃2 . (4.1)

This procedure is formally equivalent, in the generalized unitarity framework, to the appli-

cations of n-dimensional cuts, and is obtained, in the OPP language, by simply performing

the OPP expansion of eq. (3.1) directly in terms of the n-dimensional denominators of

eq. (3.2). By doing so, all coefficients of the OPP expansion start depending on q̃2. The

2After multiplication with the Z̄i, they give non vanishing contributions.
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spurious terms keep being spurious, because they vanish due to Lorentz invariance (that is

untouched when including powers of q̃2), while the coefficients d, c, b generate the following

extra integrals [11]

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)

2

3

]

+ O(ǫ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ǫ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ǫ) .

(4.2)

One can prove that

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) . (4.3)

Furthermore, by using eq. (4.1), the first line of eq. (3.1) becomes

D(m)(q, q̃2) ≡

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3; q̃
2) + d̃(q; i0i1i2i3; q̃

2)
]

m−1
∏

i6=i0,i1,i2,i3

D̄i , (4.4)

and the following expansion holds

D(m)(q, q̃2) =

m
∑

j=2

q̃(2j−4)d(2j−4)(q) , (4.5)

where the last coefficient is independent on q

d(2m−4)(q) = d(2m−4) . (4.6)

In practice, once the 4-dimensional coefficients have been determined, one simply redoes

the fits for different values of q̃2, in order to determine b(2)(ij), c(2)(ijk) and d(2m−4). Such

three quantities are the coefficients of the three extra scalar integrals listed in eq. (4.2),

respectively, so that

R1 = −
i

96π2
d(2m−4) −

i

32π2

m−1
∑

i0<i1<i2

c(2)(i0i1i2)

−
i

32π2

m−1
∑

i0<i1

b(2)(i0i1)

(

m2
i0

+ m2
i1
−

(pi0 − pi1)
2

3

)

. (4.7)

A formula similar to eq. (4.7) has also been derived in [9].

In appendix A, we prove eqs. (4.3)–(4.6), we single out the origin of d(2m−4) as the

coefficient of the last integral of eq. (4.2) and we show how it can be also derived outside the
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OPP technique. Finally, yet another way of computing d(2m−4) can be obtained by noticing

that

d(2m−4) = lim
q̃2→∞

D(m)(q, q̃2)

q̃(2m−4)
. (4.8)

This last method is also implemented in the code of ref. [13].

We stress that the way of computing the coefficients appearing in eq. (4.7) is immate-

rial. Therefore the method to extract R1 described in this section, namely by looking at the

mass dependence of the coefficients of the scalar loop functions, can be used independently

on the OPP technique. In particular, one can derive all needed coefficients also with the

help of analytical methods.

We close this section by making contact between our way to compute the Rational

Part of the amplitude and the relevant literature. The procedure of finding the RTs by

fitting the various powers of q̃2 in the coefficients of the cut constructible part has been

first introduced in [11], for up to 4-point functions and, for the general case, in [13]. The

authors of [9] (GKM), also apply a similar technique, but with two differences, that we will

now comment in turn.

• GKM do not split R into 2 parts, as we do. This is performed at the price of

introducing n-dimensional polarization vectors to explicitly compute amplitudes in n

dimensions. As far as we understand, such a procedure has been shown to work only

in the case purely gluon amplitudes, for which the extra polarization can be treated

like a ’scalar’ particle. How to extend such a technique to fermions is unclear. In

our approach, the full procedure is, instead, 4-dimensional and fully general, avoiding

this kind of complications. In our case the price to pay is splitting R into 2 pieces

(R1 and R2) and deriving extra tree-level like Feynman rules to compute R2.

• GKM introduce a pentuple cut, while we don’t. The reason is that, as we prove in

appendix A, the q̃2 dependence of the coefficients d of the 4-point scalar functions,

coming from expressing 5-point scalar functions in terms of boxes, cannot generate

RTs. However, combining those contributions together with the 4-point coefficients

generated by the pure 4-point part of the amplitude, all d’s become rational functions

of q̃2, instead of polynomial ones. Therefore, in order to avoid uneasy-to-handle ratio-

nal functions of q̃2, GKM subtract the pentagon contributions by explicitly computing

pentuple residues, while we recombine, instead, all 4-,5-, · · ·, m-point structures to-

gether to get back the polynomial dependence of q̃2 given in eq. (4.5).

5. Conclusions

We have discussed and clarified the origin of the Rational Terms appearing in one-loop

amplitudes, showing that they can be classified in two classes. The first class (R2) can be

computed by defining tree-level like Feynman rules for the theory at hand. We precisely

outlined the way to derive the needed extra Feynman rules, listing them explicitly in the

case of QED. We therefore consider the problem of computing R2 completely solved. The
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second piece (R1) can be calculated in two different ways. We presented a first technique

that relies on the OPP method and a second, more general, computational strategy. Both

methods have been successfully tested within the OPP method. The second one, however, is

more suitable for a numerical implementation, and it has been used in the numerical code

CutTools.
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A. The q̃
2 dependence of the OPP coefficients

Our starting point is a rank r tensor m-point integrand defined as

Am;r ≡
qµ1

· · · qµr

D̄0 · · · D̄m−1
(m > 3 , r > 1) . (A.1)

By expressing the integration momentum q in terms of the basis of the external vectors,

with coefficients linearly depending on the propagator function appearing in the denomi-

nator [11], one ends up in an expression that it is identical to the OPP master equation plus

terms containing higher-point scalar amplitudes Ak;0 k = 5, . . . ,m. Since all reductions

formula used so far are simple polynomial in terms of q̃2, the same is true for all coefficients

appearing in that expansion. This, in conjunction with the fact that the maximum rank

allowed r = m, easily proves first of all eq. (4.3). In the next step one reduces the k−point

scalar terms k = 5, . . . ,m in terms of the 4−point ones at the integrand level. After that

step the individual d and d̃ coefficients become rational functions of q̃2. Nevertheless, since

the D(m)(q, q̃2) of eqs. (4.4) and (4.5) is nothing more than the combined numerator of

all scalar terms with k = 4, . . . ,m, and all coefficients are polynomials in q̃2, so is the

D(m)(q, q̃2) function. Finally it is straightforward to see that in the OPP expansion in terms

of n−dimensional propagators, the q̃2 → ∞ behavior of the individual d terms is q̃4, which

means that the only integral involved is the last one of eq. (4.2).

Another way to derive the same results is by using the reduction at the integrand level

introduced in [14]. One can express Am;r as a linear combination, with tensor coefficients,

of five classes of lower rank tensors: Am;r−1, q̃
2Am;r−2, Am;r−2, Am−1;r−1 and Am−1;r−2. To

keep things as transparent as possible, we omit explicitly writing the coefficients and we
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denote such a linear combination using the following notation3

Am;r =
{

Am;r−1|q̃
2Am;r−2|Am;r−2|Am−1;r−1|Am−1;r−2

}

. (A.2)

Analogously, it was proven that

Am;1 = {Am;0|Am−1;0} (m > 4) ,

A4;1 =
{

A4;0|A3;0|d̃(q)A4;0

}

, (A.3)

where d̃(q) is defined such as
∫

dn q̄ d̃(q)A4;0 = 0 . (A.4)

By using eqs. (A.2) and (A.3) it is easy to constructively prove eqs. (4.5) and (4.6).

We explicitly give the derivation for the case m = 6 and r = 6. By iteratively applying

eqs. (A.2) and (A.3), one ends up with

A6;6 =
∑

j=4,5,6

{

Aj;0|q̃
2Aj;0|q̃

4Aj;0

}

+
{

q̃6A6;0

}

+
{

d̃(q)A4;0|d̃(q)q̃2A4;0

}

+ O(A3;r3
) , (A.5)

where O(A3;r3
) means that we are neglecting contributions with 3 or less denominators.

By power counting, only the term q̃4A4;0 contributes to R1. Notice also that its coefficient

(that we call z4) is independent on q. Now we can take a common denominator in eq. (A.5)

by multiplying and dividing 5 and 4-point structures by the relevant missing n-dimensional

propagators. In particular, for example, by calling D̄i and D̄j the 2 denominators that do

not appear in A4;0

z4 q̃4A4;0 = z4q̃
4D̄iD̄jA6;0 = z4q̃

4(q̃2 + Di)(q̃
2 + Dj)A6;0 . (A.6)

The numerator of the resulting expression is polynomial in q̃2 and it is nothing but the

function D(m)(q, q̃2) of eqs. (4.4) and (4.5), with m = 6. Furthermore d(8) = z4, independent

on q. The general case can be derived along the same lines.

Eq. (A.6) also clarifies why d(2m−4) is the coefficient of the 4-point like last integrals

of eq. (4.2). In fact, m − 4 among the m original n-dimensional denominators always

completely factorize in front of d(2m−4). Notice also that the origin of the coefficient

d(2m−4) is uniquely coming from the mass dependence of the coefficients of the 4-point

scalar functions after tensor reduction, but before expressing m-point scalar functions with

m > 4 in terms of boxes. The reason why we do not reduce eq. (A.5) to structures with

4-denominators is that this would bring a q̃2 dependence in the denominator, when passing

from 5 to 4 denominators. In our notation [15]

A5;0 =

{

1

q̃2 + ci
A4;0

∣

∣

∣

∣

1

q̃2 + ci
d̃(q)A4;0

}

, (1.7)

with ci constants. It is therefore much better to take, instead, common denominators.

Finally, analogous techniques can be used to prove eq. (4.3).

3Notice that each of the five terms of eq. (A.2) may actually represent an entire class of contributions

with different combinations of denominators. For example Am−1;r−1 stands for all m rank r − 1 tensor

integrands that can be obtained by omitting 1 among the original m possible denominators.
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